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C R r r I C A L  SHEAR STRESS a? m = Y  LOE, SIMPLY 

By Manuel Stein a d  Robsrt W. m i c h  

A t h e a r e t i c a l  solution is  given far  the c r i t i c a l  shear stress of 
an i n f i n i t e l y  long, simply supparted, f l a t  p l a t e  with ident ical ,  equally 
spaced, transverse s t i f f e n a r s  of zero torsional s t i f fnes s .  Result6 are  
obtained by mans of the  Lagrangian mult ipl ier  method and are presented 
i n  t h e  fm of design charts.  
are found t o  be i n  good agreement wlth the  theo re t i ca l  results. 

Xxperimental results are included and 

TPJTRODUCTION 

The design of ehear web beams and nomrinlding skin surfaces 
requi res  a knowledge of the  c r i t i c a l  she.= Stress of s t i f fened  plates .  
The purpose of t he  present pqmr i e  t o  give the theo re t i ca l  c r i t i c a l  
shear stress of an i n f i n i t e l y  long, simply supported, f l a t  p l a t e  r e i +  
forced with ident ical ,  equally spsced, trmmarse s t i f f ene r s .  

The results are found by means of the  Lagrangian mult ipl ier  method. 
The s t i f f ene r s  are assumed t o  have bending s t i f fnes s  but no tors iona l  
s t i f f n e s s  and are assumed t o  be concentrated along transverse l i n e s  i n  
the  middle plane of t he  plate .  
no tors iona l  s t i f fness .  applies wi th  l i t t l e  error i n  the  case of many 
open section s t i f f ene r s .  The asawnption that t h e  s t i f f e n e r s  are con- 
centrated alwg transverse l i n e s  i n  the  midiUe plane of the p l a t e  is  

parison with the  s t i f f e n e r  spacing. 

The assumption that the  s t i f f e n e r s  have 

Y applicable whenever the  width of the attached f lange i s  small i n  com- 

The t heo re t i ca l  analysis of the problem is given i n  the appendixes. 
For completeness, an energy solution f o r  t he  p l a t e  with r e l a t ive ly  weak 
s t i f f e n e r s  i s  given i n  appendix A. The solution f o r  a p l a t e  with 
s t i f f e n e r s  of intermediate or  higher bending s t i f f n e s s  i s  given i n  
appendix B. 
curves which cover the complete range of s t i f f e n e r  s t i f f n e s s  and various 
s t i f f e n e r  spacings and i n  a t ab le  giving values from which the  curves 

The r e s u l t s  a m  presented i n  the  form of nondimnsional 
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. were drawn (table I ) .  
Comparison of these r e s u l t s  with the  present theory indicates  good 
agreement between theory and experiment. 

m e r i m e n t a l  results are :resented f o r  20 panels. 

I 7 c r i t i c a l  shear s t r e s s  

t thickness of the  p l a t e  

b width of p l a t e  

I d s t i f f ene r  spacing 

% I d  p a n e l  aspect r a t i o  
I 

I 
I 

I 

D f lexura l  s t i f f n e s s  of the  p l a t e  

E Young's modulus f o r  p l a t e  
P 

E Young's modulus f o r  s t i f f e n e r  

I ef fec t ive  moment of i n e r t i a  of stiffener 
L 

CI Poisson's r a t i o  f o r  mater ia i  

E€ 
w 

r a t i o  of s t i f f e n e r  a t i f fnes s  t o  p l a t e  s t i f f n e s s  

I x half wave length of buckles 

W deflection of the  p l a t e  

(wS>i  
deflection of the i ' t h  s t i f f e n e r  

X, Y reference axes 

7 

1 

II 
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coeff ic ients  of def lect ian function 

7n undetermined Iagrangian mul t ip l ie rs  

v in t e rna l  energy of bending of the p l a t e  

i n t e rna l  energy of bending of s t i f f e n e r s  vS 

T external  work of the stresses 

The problem of the  buckling of s t i f f ened  p l a t e s  i n  shear has been 
t rea ted  by many authors by the use of both t h e a r e t i c a l  and semi- 
empirical methods. In  1930 Schmieden (reference 1) solved the differ-  
e n t i a l  equation f o r  an i n f i n i t e l y  long p l a t e  s t i f fened  by closely 
spaced transverse s t i f f ene r s  (equivalent t o  orthotropic p l a t e )  and 
found exact s t a b i l i t y  c r i t e r ions  f o r  shear buckling of p l a t e s  with 
simply supported e m s  and with clamped edges. 
simplifying modifications of the s t a b i l i t y  c r i te r ions ,  Schmieden 
obtained approximate values of the c r i t i c a l  shear stresses. Later i n  
1930 Seydel (reference 2) obtained exact solut ions f o r  i n f i n i t e l y  long 
orthotropic p l a t e s  with simply supported or clamped edges. With the  
use of the  proper parameters Seydel*s results can be readi ly  applied 
t o  p la te -s t i f fener  combinations. The values of the  s t r e s ses  obtained 

.from Scbmieden's theory l i e  slightly below the  exact values of Seydel. 
In  1947 T. K. Wang (reference 3) used the  energy method t o  obtain an 
appraximate solut ion f o r  p la te -s t i f fener  combinations with simply 
supported edges. 
A l l  the  foregoing solutions m e  applicable only t o  the  case of weak 
s t i f f ene r s ,  where the s t i f fen ing  e f f ec t  of the  s t i f f e n e r s  can be 
considered t o  be uniformly dis t r ibuted over the p la te .  

By making cer ta in  

Wang's r e s u l t s  l i e  above the exact values of Seydel. 

Solutions a m  a l so  available f o r  p l a t e s  reinforced by r i g i d  
In 1936 Timoshenko (reference 4) t rea ted  the case of 

By mean8 of t h s  energy method Timoshenko found the 

s t i f f ene r s .  
simply supported rectangular plates  reinforced with one or two 
s t i f f ene r s .  
s t i f f e n e r  f l exura l  r i g i d i t y  necessary t o  prevent bwAcling across 
s t i f f e n e r s  with the  conservative assumption t h a t  the s t i f f e n e r s  ac t  as  - 
simple supports. I n  1948, Budiansky, Comer, and Stein (reference 5 )  
found the  c r i t i c a l  shear s t r e s s  fo r  an i n f i n i t e l y  long, cla.m?ed p l a t e  
divided i n t o  square panels by nondeflecting intermediate supports which 
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correspond t o  r i g i d  s t i f f ene r s .  They a l s o  considered the  case of a 
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p l a t e  of i n f i n i t e  length and width having nondeflecting intermediate 
supports t ha t  form an array of square panels. 

Kuhn has w r i t t e n  a number of papers on r e l a t e d  subjects  i n  which 
he presents  semiempirical results f o r  the  c r i t i c a l  shear stress of 
s t i f f ened  plates .  (See, f o r  example, reference 6.)  

The available theore t ica l  solut ions t reat  the  r e l a t i v e l y  unim- 
portant  case of w e a k  or closely spaced s t i f f e n e r s  and t he  case of 
r i g i d  s t i f f ene r s  t ha t  divide a p l a t e  i n t o  square panels. None of t h e  
theo re t i ca l  solutions presents r e s u l t s  f o r  t h e  p rac t i ca l  range of 
intermediate s t i f f e n e r  s t i f f n e s s  and very l i t t l e  theory i s  presented 
f o r  the prac t ica l  range of spacing of r i g i d  s t i f f ene r s .  Also, it i s  
f e l t  that the semiempirical results f o r  transverse s t i f f ened  p l a t e s  
cannot. be extended t o  a l l  s t i f f e n e r  spacings and s t i f fnesses  without 
a sound theore t ica l  basis .  The  t heo re t i ca l  r e su l t s  of t h e  present 
paper cover the complete range of s t i f f e n e r  s t i f f n e s s  and the  p rac t i ca l  
range of s t i f f  ener spacing . 

RESULTS AND DISCUSSION 

The c r i t i c a l  shear stress f o r  a p la te -s t i f fener  combination 
i s  given by the formula 

f12D 

b2t 
T = k  - 

Curves are presented i n  f igure  1 giving corresponding values of kS 

and the s t i f fnes s  parameter - for simply supported, t ransversely 

s t i f f ened  plates with panel aspect r a t i o s  of 1, 2, and 5 .  These 
r e s u l t s  a r e  rep lo t ted  i n  logarithmic fo,m i n  figure 2 f o r  comparison 
with experiment,al r e su l t s .  

Dd 

The points of discont inui ty  of t he  s lopes i n  t h e  curves of figure 1 
The present results f o r  an ortho- represent cha i se s  i n  buckle pat terns .  

l rop ic  plate  agree with the  exact results of reference 2. 
vation of t h e  buckling c r i t e r i o n  for an orthotropic  p l a t e  (a p l a t e  
sLiffened by s t i f f ene r s  of low bending s t i f f n e s s )  is given i n  appendix A. 
The derivation of the buckling c r i t e r i o n  f o r  p l a t e s  s t i f f ened  by 
si,it"feilern of higher bending s t i f f n e s s  is given i n  appendix B. 

The deri- 
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?i-~ previous solutions, values of k, were found by using the  
orthotropic-plate curve and a cut-off at the value of ks f o r  simply 
supported panels. (See f i g .  1.) These figures show t h a t  the  present 
solution y ie lds  values of k, 
by the orthotropic-plate curve i n  the  intermediate range of s t i f f e n e r  
s t i f fnes s .  Also, the  present solution for more r i g i d  s t i f f e n e r s  y ie lds  
a curve tha t  i s  higher than the cu-f, which is obtained by assuming 
the s t i f f e n e r s  t o  have the e f fec t  of aimple supparts. Since the  conti- 
nu i ty  of the  p l a t e  across the s t i f feners  of higher bending s t i f f n e s s  
cer ta in ly  adds a constraint  t o  the plate,  a higher buckling stress than 
t h a t  carresponding t o  a simply supported eQe is  obtained. 

that a m  considerably belar those given 

I n  figure 2, experimental r e su l t s  axe cnmpared with the  theo re t i ca l  
curves. These results a m  fram two sources. The first set of erperi- 
mental data  is  taken from NACA t e s t s  on shear webs of 24%” aluminum 
alloy attached t o  tors ion boxes. 
box and the  method of loading are given i n  reference 7. 
were obtained f romthe  s t i f f e n e r  load-deflection curves which were 
taken from the or ig ina l  data. 
present paper is  the  average load a t  which t h e  s t i f f e n e r s  start t o  
def lect .  
given i n  t ab le  11. 

Ikawings of a shear web and tors ion 
Buckling loads 

Each of t he  buckling loads given i n  the  

The propert ies  of the specimens and t he  buckling data  are 

The second s e t  of experimental data  i s  taken from NACA t e s t s  on 
The beams were made of th ick  web beams described i n  reference 8. 

24s-T aluminum alloy with heavy flanges and w i t h  joggled s t i f f e n e r s  
r ive ted  t o  the  flanges. The open spaces i n  the  joggles were f i l l e d  
with s o f t  metal. 
The load was applied a t  the center and the react ions were a t  the  
ends of the beams. 
supports. 
was taken as the buckling load. The propert ies  of t he  specimens and 
the buckling data are given i n  table 111. 

A picture  of a f a i l e d  beam i s  sham i n  figure 3. 

La tera l  deflections were prevented by l a t e r a l  
The load, when s t r a i n  was f irst  observed i n  the s t i f feners ,  

The s t i f f e n e r  spacinga f o r  the t e s t  results are not the  same as 
those f o r  the theore t ica l  resu l t s .  A l l  the  test r e s u l t s  f a l l  i n  the 
expected regions among the  theore t ica l  curves. 

r e s u l t s  f o r  which f a l l  i n  the range which serves t o  ver i fy  

the present theory over previous theory which considered the  orthotropic- 
p l a t e  curve t o  hold up t o  the cut-off at  which the  s t i f f e n e r s  are  
assumed t o  a c t  as simple supports. 
agree with the present theory, but they do not cover the  range i n  which 
an appreciable difference exists between the present theory and previous 
theory. 
theory fully. 

Only the  group of test 

= 2.4 
d 

The other groups of tes t  results 

~ 

More experimental resu l t s  are required t o  confirm the present 
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CONCLUDING REMARKS 

Charts are presented from which the  theo re t i ca l  c r i t i c a l  shear 
s t r e s ses  c m  be obtained f o r  i n f i n i t e l y  long, sim$ly supported p l a t e s  
s t i f fened  with ident ica l ,  equally spaced, transverse s t i f f e n e r s  of zero 
tors iona l  s t i f fness .  
mult ipl ier  method. 
t o  hold up t o  a cut-off value corresponding t o  the s t i f f ene r  s t i f f n e s s  
at  which the  buckling load w a s  equal t o  the  buckling load of a simply 
supported panel the s ize  of each bay. 
and previous theory shows t h a t  previous theory gives unconservative 
r e s u l t s  f o r  s t i f feners  of intermediate s t i f f n e s s  and conservative 
r e s u l t s  for s t i f f ene r s  of high s t i f fness .  Test results of 20 panels 
m e  presented which are i n  good agreement with the present theory. 
a conclusive check addi t ional  test results are required. 

The theo re t i ca l  results a m  based on the Lagrangian 
Previous theory considered the  orthotropic curve 

Comparison of the present theory 

For 

Langley Aeronaut I c a l  Labarat ory 
National Advisory Committee f o r  Aeronautics 

Langley Air Force Base, Va., Ja~xmrY 28, 1949 
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THEORETICAL SOLUTION OF CRITICAL SBEAR SlCliESS OF pw-1TES 

WIT" TRANSVERSE SI'lFFENERS OF LOW BENDING STIFFNESS' 

If the s t i f f ene r  bending s t i f fnes s  is luw a d  the s t i f f e n e r s  are 
f a i r l y  c losely spaced, the  buckle pat tern may be considered independent 
of the  s t i f f ene r  spacing, and the  plate s t l f f ene r  combination can then 
be analyzed as a p la te  with different  bending propert ies  i n  each 
direction, tht  is, an orthotropic plate .  
shear of an orthotropic p l a t e  i s  analyzed by means of the energy method. 

I n  t h i s  appendix buckling i n  

The buckling configuration of the p l a t e  sham i n  figure 4 is  
represented by the trigonamstric se r ies  

nfly nfly + cos - 7 bn s i n  - 
h, b 

s in  - 
b 

w = s i n  ">-' x 
n=2,4,. . . n=1,3,. . . 

which satisfies the boundary conditions of s i m 2 l e  support term by term. 
The in te rna l  bending energy of the p l a t e  
of the  s t i f f ene r s  
are  given by the  expressions 

V, the  in t e rna l  bending energy 
Vs, and the external work of the shear stresses T 
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l Substitution of the  expansion f o r  w (equation (Al)) i n t o  these 
energy integrals  gives 

v = -  E I M 4 ( 9  an 2n4 + 

S 8ab3 n=2,4,. . . n=1,3,. . . 

n=1,3,. . . 4=2,4,. . 

Then 

I-- 1 
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where 

According t o  the e n e r a  method the -potential energy (V + Vs - T )  
must be minimized with respect t o  the unknown coeff ic ients  % and bn. 
By minimizing (V + Vs - T )  with respect t o  the  coeff ic ients  an and bn, 
the following set of equations i s  obtainsd: 

= o  

(n=2,4,6, . . . ) 

The coeff ic ients  an can be found i n  terms of br from 

equation (Ab). Substi tution of the r e su l t i ng  expression f o r  an i n  

equation (A5) r e s u l t s  i n  the following equations: 
I 

i 
q=2,4,. . . 

(A4 1 

(A5 



nant vanishes: 

c31 

51 
C 

where 

- 
cnn - ($ + n2>’ + 4 

n 

c13 

c33 

53 
C 

. 

c15 

c35 

55 
C 

. 

1 
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. e .  

. . e  

. .e  
= o  

2 2  n a  

q=2,4, 

(where n 4 r )  

A solution including all the  a * a  and b can be obtained by n 1 
s e t t i n g  equal t o  zero the  first appraximatian of t he  determinant 
equation (A7) 
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Similarly the  second appraximatian includes all the  a n t s J  bl, 

3 and b 

2 
%1 c33 - c13 = 0 

Higher approximations m e  found i n  a similar manner. 
mation was found t o  give sat isfactory results. 
mation .It is  necessary t o  t r y  values of 
sponding values of ks u n t i l  a minimum value of ks with respect  

t o  b/X is  found for each - The r e s u l t s  a m  given i n  t ab le  I and 

i n  f igu re  1. 

A second approxi- 
For a given approxi- 

b/X and f i n d  the corre- 

Dd. 
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APPENDIX B 

THEORETICAL SOLUTION OF CRITICAL SHEAR STRESS OF PLATES 

In appendix A a theoretical solution for a plate stiffened by 
stiffeners of lar bending stiffness is presented where the buckle 
pattern was taken as sinusoidal in the longitudinal direction. The 
buckle pattern of plates with stiffeners of higher bending stiffness 
is no longer sinusoidal in the longitudinal direction. 
necessary to consider deflection functions ubich are either aymmstric 
or antisymmetric about the mtdpoint of each bay and are periodic over 
an integral number of bays. The critical shear stress of plates with 
transverse stiffeners of higher bending stiffness is analyzed by mans 
of the Lagrangian multiplier method. 

It is then 

Deflection functions.- The correct buckle canfiguration for my 
given plate-stiffener combination is that which corresponds to the 
lowest buckling load. 
gated. 
two-dimensional trigonometric series (the coordinates are given in 
fig. 4). Symmetric buckling, periodic over each bay: 

Several types of configurations are Investi- 
These buckling configurations a m  represented by the following 

w =  > E  n*Y a sin mx - sin - m-? d h 
Y 

m=2,4,. . . n=2,4,. . . 

nncx: n W  bm cos - sin - d b 
m=0,2,. . . n=1,3,. . . 

Antisymmetric buckling, periodic over each bay: 

m m 

mrCX nfiY a sin - s in  - d b 
m=2,4, ... n=1,3,... 

al m 

mx sin - n v  
b 

+>- 7- bm cos- 
d 
I 

m=O,2 ,... n=2,4 ,... 
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b 

- . 

Symmetric buckling, periodic over two bays: 

m x  nfi J a sin - sin - 
d b 

m = l , 3  ,... n=1,3 ,... 

1n=i,3~... n=2,4 ,... 
nJV bm COS - mx sin - 

d b 

Antisymmetric buckling, periodic over two bws: 

mNc nfiY % sin - sin - 
d b 

m=l,3 ,... n=2,4 ,... 
m m 

mXX nfly sin - +>' >- bm COS- 
b d 

m=1,3,... 11=1,3,.. . 

Spnetric buckl-tng, one bay; antisymmetric buckling, next b q ;  periodic 
over f o u r  bays: 

r 1 
-1 - 

w = 9 2 cos - sin 
m=l,3 ,... n=1,3 ,... mq 2d b 

e nrty (B le )  sin - 2 + 9 >'- b, L i n  - (-1) cos - 
2d 2d b 

m=1,3, . . n=2,4,. . . 
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- C a r e f u l  study has s h m  that other buckle pa t te rns  would require  higher 
buckling loads and t h a t  only t he  f i v e  buclrle p a t k v n s  given need be 
considered. 

These deflection functions all satisfy term by term the  conditions 
of simply supported edges a t  
across the  s t i f feners  at  x = 0, d, 2d,.... The condition that 
s t i f f ene r  deflection equal p la te  def lect ion a t  the s t i f f e n e r s  i s  
introduced by means of La&angian mult ipl iers .  

y = 0, b and continuity of the p l a t e  

The deflection functions (Bld) and (Ble) are found t o  be the  
governing ones for the aspect r a t i o s  investigated; t he  others lead 
t o  unconaorvative solutions.  Buckling c r i t e r ions  f o r  t5e c r i t i c a l  
shear s t r e s s  are derived for the  deflection functions (Bld) and (Ble). 

Antisymmetric buckling, pe r l o d i c  over two bays.- The def lect ion 
of the  plate is given by equation (B ld )  as 

ca 
mr[x nfiY w = >  je a s i n - s i n -  b mn d 

~ 1 ~ 3 , .  . . n=2,4,. . . 

rmtx nflY sin - 
b 

+y- 9. b m C O 8 - -  
d 

1n=1,3,.~. n=1,3 ,... 

The deflection of the i ' t h  s t i f f e n e r  i s  ta.ken as 

nxY 
b ( x s b  = >'- 41 s i n  - 

n=l, 3,.  . . 
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where, since the in t e rva l  t o  be considered includes two s t i f f ene r s ,  
m d  2. 
def lect ion are 

i = 1' 
The boundary conditions that  s t i f f e n e r  def lect ion equal p l a t e  

o r  upon subst i tut ion,  

W 

(n=1,3,. . .) 
(n=1,3,. . .) 

These equations show t h a t  4.11 = %2. If is redefined as L+., 

the boundary conditions becanrs 

Q) >-' b m + 4 = 0  

m=1,3, . . . 
These boundmy conditions w i l l  be ea t i s f i ed  i n  the  energy expression by 
mans of Lagrangian multipliers.  

The i n t e rna l  bending energy of the p la t e  V, t he  in t e rna l  bending 
energy of the  stiffeners 
s t r e s s e s  T are given by the  expressions 

V,, and the external work of the  shear 
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Substi tution of the deflection functions of the p l a t e  and s t i f f e n e r s  
i n t o  these energy i n t e g r a l s  gives 

r 

L 
1 

J m=1,3,. . . n=1,3,. . 

c 
n=1,3,. . . 

m T = 47tn >'- f a b 
m=l,3,. . . n=2,4, .. . q=1,3,0. 
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The energy method requires that the potential energy (V + Vs - T) 
be minimized with respect to the als ,  bta, and A's. Since the 8?a, 
bte, and A98 are, however, bound by equations (B3), the minimization 
is performed by the Lagrangian multiplier method by minimizing the 
following function F with reepect to the a l s ,  b's, and A's: 

F = W + p  yn( 
rn=1,3,. . . - 

4b n=l, 3, . . . 
where the 7's are the Lagrangian multipliers. When this minimization 
is performed, the follaring set of equations is obtained: 

(m=L3, 1 
(n=2,4,. o .  ) 

*co 

- -  aF - 0 = 2bm(m2 $+ n 2 r  + 7;i: 16ks b >- w q  
+ 7n 

%q mn ab 

q=2,4, 

(=1,3, 0 )  

(n=l, 3, .  . . ) 

( n = L  3, . . ) 
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- When the equations (B7) are cambined, the following equation6 are 
obtained : 

2 
bm (m2 + n2)2 - Dd n 4 4  

Equations (Ma) writ ten i n  matrix form are 

c m l  clIiL3 

'm31 'm3 

'm5l 'm53 

- 

0 . .  

0 . .  

c 

0 . .  

- 
(m=1,3,. . .) 

where 

0 

q=2,4,. . . 
2 2  m a r n  

, 

I 
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A solution including aJ1 the  %*a and bd*s can be obtained 

by the f irst  appraximation of the matrir equatian (B8b) 

Substi tution of 
yields  

bml from equation (Bg) i n t o  the boundary equation (B3) 

The follwing s t a b i l i t y  cr i ter ion is obtained by setting equal t o  
zero the coefficient of +: 

similarly, the second apprarimatian includes all the amn*s, batsJ 

m3 and b ( 8 .  Two simultaneous equatiane r e d t  from which bml and b m3 
can be found. Substitution of these values i n to  the boundary equation (B3) 

* yields two l i n e a r  homogeneous equations in 4 and 5. If the determi- 
nant of the coefficients of these two equat ims  is set-equal t o  zero, the 
following s t a b i l i t y  c r i te r ion  is  obtained: . 
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(s ... 
+ If+- cm3 + 

2 
'm1.'m3 - 

Hgher approximations are found i n  a similar nmner. A second 
approximation was found t o  give sa t i s f ac tmy  r e d t s .  
these appraximtions, it is  necessary t o  f ind  the lowest value 
of ks for each value of - The results me given i n  tab le  I and 

i n  f igure 1. 

Far each of 

Dd. 

Buckling periodic over four bays.- The deflection of the plate  i s  
given by equation ( B l e )  as 

w = F  F, a mn 

m=1,3,... n=1,3,.. . 
nxx 

2d 
m a  2 
2d 

s in  - + (-1) cos 

m=l, 3, . . n=2,4, . . L 
The deflectian of the i t t h  e t i f fener  I s  talcen as 

(%)i = 7 4li sin = b 
n=1,2,. . . 

. 

L 
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# 

where 
stiffeners. The boundary conditions 

i = 1, 2, 3, and 4, since the interval considered Includes four - 

becoms 

-1 
2 
- 9 . am (-1) - 4 1 = o  (n=L 3, ' 1 

m=1, 3, . . . 

-1 
(n=1,3, . . . ) y- % (-1) 2 + 4 3 = 0  

=1,3, . . . 
OD m-1 

(n=2,4,.. .) 2 > bm (-1) + 4 3  = 0 
m=l,3, . . . 
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W m-1 

=1,3, . . 
These equations show that 

'nl= - 4 2  - 4 3  ,= 4d.t (n=1,3, 1 

4-d = Lh2 = - 4n3 = - 4 4  (n=2,4,. . . ) 

If hl is  redefined as 4, the  boundary conditions becams 

m-1 - 
(n=1,3,..*) y (-1) 2 -4 = 0 

m=1,3, . . 
m-1 - 

(-1) * - 4 = 0 (n=2,4,. . .) 

Them boundary conditions will be s a t i s f i e d  in t he  energy expression by 
mans of Lagrangian multipliers.  

except t h a t  in the present problem the  upper limit of integrat ion 
is replaced by 4d and the  upper limit of t he  summation 2 is 
replaced by 4. 

The energy in tegra ls  are the  sam as the energy integrals  (&), 
2d 

c 
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The deflection functions of the p l a t e  (equation (B le ) )  and s t i f f e n e r s  
(equation (Bl3)) are subst i tuted into these energy integral8 and result 
i n  the  following expressions: 

r m  eo 

L 

eo 1 

- 
n=1,2,. . . 

m -1 - 
mnq 

(n2 - s') 
T = 8 ~ t ~  9 9 a b (-1) 

mn mq m=1,3, . . . n=lr3, . . . q=2,4, . . 
The mlnimization of (V + Vs - T) i s  p e r f o m d  by the  Lagrangian 

mult iplfer  method by mintmizing the following function F with respect 
t o  the ats, b's, and Ate .  

V + V s - T + y -  
Tn F =  - .4Dd n=1,3, . . . 

b3 r 

where the  7'3 are the  Lagrangian multipliers.  

J 
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When the minimization is  performed and the r e su l t i ng  equations 
are combined, the following s e t  of equat ims  is obtained: 

(mi--1,3, * I  
(n=1,3, . .) 

(-1,3,. 0 . 1  
(n=2,4,. . .) 

where 

, 

IR-1 
P 

8ksb 
rm = - m(-1) 

nd 
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Equations (B16a) i n  matrix form are  

0 2 
% D l  T r ,  

A 6 o --rm 
5 m3 

12 
0 - r  ,r  4 

15 7 m  

6 
0 z r m  0 . .  

4 
15 

0 ... 10 0 - -  
21 rm 

2 

7 rm * * *  

A?& - - r 0 ... 
0 

20 

9 

12 - r  
7 m  

m 

o --rm 10 o --rm 20 
21 9 

0 
6 

35 
- r  

- 

and 

0 
2 

3 - rm 

h 5  

ii rm 
30 

. 

A first  approximation of 

b&'s i n  equation (B16b). 

- 
2 E1 

w = (-1) - 

4 

3* 4 2  

is found by considering a l l  the  ad's 

m+l I 

Subst i tut ion of and b d  f r o m e q u a t i o n s  ( B l 7 )  i n to  the  boundary 
equations (B14) y ie lds  

( ~ 1 6 b )  
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+(; 9- 
m=1,3,. . . 

32 - 
%Ill 

4 *  -(Z m=1, 3 y . .  . kk - 5  rm 

If the  determinant of the coeff ic ients  of the  l i nea r  homogeneous 
equations (~18) is  set equal t o  zero, the  following s t a b i l i t y  c r i t e r ion  
is  obtained: 

*ml 1 

A ~ A ~ - - ~ ~  4 2  2- 
9 

4 2  
Ad*& 9 rm 

\m=1,3,. . . 
';n \* = o  

Similarly, from the  second approximatlon, including a l l  t he  

b&, m d  a terms, the following s t a b l l l t y  c r i t e r ion  I s  obtained: 
ad, 

m3 
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I -  

I . .  
I -  

TABU I. - S-SS COEFFICIXNTS FOR STIFFENED PLATE3 

WITH PANEL ASPECT RATIOS OF ONX, TWO, AID FIVE 

Plate6 with s t i f f e n e r s  of low 
bendiqj stiffnee& 

0 
2 
5 

20 
50 

100 
200 

5.34 

16.07 
37.14 
68.99 

10.34 

112.2 
184.6 

P la t e s  with s t i f f e n e r s  of higher 
bending atiffneee 

Aspect 
rat i o  

1 

2 

5 

Antisymmetric 
buckling 

periodic over 
two bays 

E€ 
Dd 

0 
2.91 
7.7e 

22.29 
aD 

0 
3-35 

14.50 
22 99 
33-11 
45.77 
61 9 97 
82-92 

112.3 
605 

00 

0 
18.02 
9 - 9 9  

176.8 
444.7 
704.4 

ks 

5.53 
7.85 
9.8Q 

11.78 
13.86 

9.65 
12.0 
16.0 
18.0 
20.0 
22.0 
24.0 
26.0 
28.0 
35.0 
37-05 

42.5 
70 
90 

LOO 
I20 
L 4 0  - 

Buckling 
periodic 

over 
four bays 

EI 
Dd 

0 
7.09 

19.03 
a0 

0 
5 47: 

11-93 
26.37 
36.29 
68-92 

145.4 
625 

a0 

0 

112.8 
220 

49 19 

a0 

8 
k 

6.0e 
lo .O 
103 
10.8t 

5.54 
15.0 
20.0 
23 0.0 
24.5 
26.0 
27.0 
28.0 
28.2 

- 
13 37 
60 

l oo  
140 
143 - 

I 

aIndependent of aepect rat io. 
b A U  the a=, &, %3, and b,& coef f ic ien ts  used. 

C A l l  the %3, Q, am5, and b,,,6 coef f ic ien ts  uaed. 
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EI 
J)d 

221 

680 

946 

98.3 

306 

456 

95.8 

4% 

41.4 

151.5 

217 

Specimen 
(4 

T 

@si) 

2.66 

3.08 

3.295 

1.21 

1.54 

1.47 

2.895 

3.01 

.82 

1.357 

1.41 

2-D-0 

3 -D -0 

4 -D -0 

5 -D -0 

6 - ~ - 0  

7 -D -0 

8-s -0 

g -s -0 

10 -s -0 

11-s -0 

12 -s -0 

TABLE 11.- EXPERlI4EITAL BUCKLING DATA OF SHEAX WEBS 

W I T H  UPRIGB'IS NOT CONNECTED TO TBE FLANGIES 

d 
(in.) 

5 .O 

5 .o 

5 -0 

10 .o 

10 .o 

10 .o 

5 .o 

5 .o 

10 .o 

10.0 

10.0 

b 
(in. 1 

23.5 

23.5 

23.5 

23.5 

23.5 

23.5 

23.5 

23.5 

23.5 

23.5 

23.5 

t 
(in.) 

0.0397 

.0394 

.0405 

.Ob4 

.04o8 

.Ob10 

.0394 

.0399 

.Oh10 

.0398 

. O b 0 5  

Upright 8 
(nominal size) 

(in. ) 

1/2 x 1/2 x 1/16 

3/4 x 3/4 x 1/16 

3/4 X 3/4 X 3/32 

1/2 x 1/2 x 1/16 

3/4 x 3/4 x 1/16 

3/4 X 3/4 X 3/32 

1/2 x 1/2 x 0.064 

3/4 X 3/4 X 3/32 

1/2 x 1/2 x 1/16 

3/4 x 3/4 x 1/16 

3/4 X 3/4 X 3/32 

's, stiffeners 3n one side of pla te .  
D, stiffeners 3n both sides of plate. 

101 

116.5 

117.5 

43.3 

54.2 

51.3 

109 

111 

28.6 

50.1 

50.3 
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# 

E1 
Dd 

91.0 

25.8 

40.4 

14.5 

30.3 

4.1 

NACA TN No. 1851 

S 
k 7 

(ksi) 

15.5 15.4 

15.4 14.13 

16.8 13.65 

16.3 15*0 

17.2 14.0 

12.3 12.7 

TABLE 111. -EXPERIMENTAL BUCKLING DATA OF THICK WEB BEAMS 

11.3 

WITH UPRIGEI'S CONNECTED TO TEE FLANGES 

13.1 11.15 

Spec imer 
(4 

11.2 13.2 

18.8 15.7 

~~ 

V-12-7S 

v-12-8s 

V-12-9D 

v-12-10s 

v-12-1u: 

v-12-128 

V-12-131 

V-12-14E 

v-12-151: 

13.1 

12.0 

d 
( in .  ) 

7.00 

7.00 

7.00 

7.00 

7.00 

7 .oo 

7.00 

7.00 

7 .oo 

t 
( in .  ) 

0.1005 

.lo44 

.io25 

.lo43 

.io25 

.0987 

.loo0 

.io07 

-1057 

Upright s 
(nomina size) 

( in .  1 

a S, St i f feners  on one side of plate.  
D, s t i f f ene r s  on both s ides  of plate .  
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Figura 4. - I n f i n i t e l y  long, simply supported plate ,  with transverse 
s t i f fenars ,  under shear. 


